
This article was downloaded by: [Univ Politec Cat]
On: 31 December 2011, At: 07:00
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Chemistry and Ecology
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gche20

The rise of thermophilic sea urchins
and the expansion of barren grounds in
the Mediterranean Sea
Paola Gianguzza a , Davide Agnetta a , Chiara Bonaviri a ,
Francesco Di Trapani a , Giulia Visconti a , Fabrizio Gianguzza b &
Silvano Riggio a
a Dipartimento di Ecologia Università Degli Studi Di Palermo,
Palermo, Italy
b Dipartimento di Biologia Cellulare e dello Sviluppo Università
Degli Studi Di Palermo, Palermo, Italy

Available online: 04 Apr 2011

To cite this article: Paola Gianguzza, Davide Agnetta, Chiara Bonaviri, Francesco Di Trapani, Giulia
Visconti, Fabrizio Gianguzza & Silvano Riggio (2011): The rise of thermophilic sea urchins and the
expansion of barren grounds in the Mediterranean Sea, Chemistry and Ecology, 27:2, 129-134

To link to this article:  http://dx.doi.org/10.1080/02757540.2010.547484

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/gche20
http://dx.doi.org/10.1080/02757540.2010.547484
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Chemistry and Ecology
Vol. 27, No. 2, April 2011, 129–134

The rise of thermophilic sea urchins and the expansion of barren
grounds in the Mediterranean Sea

Paola Gianguzzaa*, Davide Agnettaa, Chiara Bonaviria, Francesco Di Trapania,
Giulia Viscontia, Fabrizio Gianguzzab and Silvano Riggioa

aDipartimento di Ecologia Università Degli Studi Di Palermo, Palermo, Italy; bDipartimento di Biologia
Cellulare e dello Sviluppo Università Degli Studi Di Palermo, Palermo, Italy

(Received 30 March 2010; final version received 19 November 2010 )

Recent ecological studies have shown a strong relation between temperature, echinoids and their grazing
effects on macro-algal communities. In this study, we speculate that climate warming may result in an
increasingly favourable environment for the reproduction and development of the sea urchin Arbacia lixula.
The relationship between increased A. lixula density and the extent of barren grounds in the Mediterranean
Sea is also discussed.
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Factors influencing the functioning of ecosystems, such as climate change, inputs of nutrients
and/or toxic chemicals, groundwater reduction, habitat fragmentation, harvest of biomasses or loss
of biodiversity, are never constant. The state of some ecosystems may respond gradually to such
changes, whereas others might remain unresponsive over time (or ranges of conditions), and then
respond abruptly when conditions reach a critical level. This implies that, for certain environmental
conditions, the ecosystem might have two or more alternative stable states, separated by an
unstable equilibrium that marks the border between the ‘basins of attraction’ of the states (the
theory of alternative stable states; ASS) [1,2]. This theory also hypothesised that natural systems
are often in persistent, resilient, alternative states: alternative combinations of ecosystem states
and environmental conditions that may persist at a particular spatial extent and temporal scale.

These states have been shown to be maintained by intrinsic mechanisms involving biotic and
abiotic interactions (grazing or predation intensity, storm frequency, pollution, local extinction,
invasion, nutrient loading, etc.) which inhibit reversal to the previous community state [3]. In
combination with other factors, the loss of a keystone species [4], which results from changes in
top-down interactions between (1) predators and herbivores and (2) herbivores and macroalgae,
may cause changes in grazing intensity and consequent switches between two or more alternative
states in marine ecosystems.

For example, in temperate seas, several species of echinoids play a crucial role, and are even
more important than other herbivores (i.e. fishes) as controllers of benthic communities [5–13].
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Variations in the population density of ecologically important echinoderm species can have marked
consequences for the ecosystem, with notable examples resulting in major ecosystem changes
described as ‘phase-shifts’between alternative stable states, or catastrophic shifts [14]. For marine
ecologists, the most familiar examples include the changes from coral- to algal-dominated systems
associated with the die-off of the tropical sea urchin Diadema in the Caribbean [15,16] and the
shift from large areas of complex macroalgal beds to areas termed ‘urchin barrens’ or ‘barren
grounds’ [5,12,17–20], which are dominated by high sea urchin abundance and crustose coralline
algae [21,22].

Subtidal urchin barrens are considered a global phenomenon [23,24], reported along temperate
coastlines [25], subtropical coastlines [26], as well as in tropical regions [27], and are often
considered ASS because they are highly resilient and may persist unless the abundance of sea
urchins declines. To date, the factors responsible for their establishment and maintenance remain
controversial and poorly understood [19,28–30].

Many authors have highlighted a human role in regulating sea urchin populations, such as
overfishing of urchin natural predators [19,23,26,27,31–33]. The generality of this assertion has
been a source of contention [34,35], and much of this debate can be summarised in two factors;
lack of controlled experimental manipulations [21] and high spatial variability observed in system
responses [34,36].

Many environmental factors can potentially decouple the top-down influence of urchins (and
indirectly predators) on macroalgae. Environmental stress associated with wave action, sedimenta-
tion and low salinity has been shown to restrict the abundance of sea urchins and/or their grazing
efficiency [37–39]. These environmental factors can vary at many spatial scales, for example,
among regions, sites within regions and across depths within sites. Oceanographic variability
can also influence the delivery of propagules and nutrients to near-shore environments [40] and
potentially affect the relative importance of urchins in controlling kelp in space and time [41].

Furthermore, we cannot omit the potential impacts of the under-way global warming, causing
ocean warming and acidification, in regulating the reproductive cycles and distribution of many
sea urchin species [42,43].

There are a number of different life-cycle stages, such as fertilisation, cleavage, planktonic
larva, settlement, metamorphosis, juvenile, adult and reproductive stages, which are affected dif-
ferently by changes in temperature. Many studies hae shown that each sea urchin species has
an optimal fertilisation temperature based on the average temperature found in its natural habi-
tat [44]. This optimal temperature is necessary for the successful development of the embryos
and pluteus larvae [45]. As recently reported by Byrne et al. [43], studies of thermotolerance
in a diverse suite of tropical and temperate sea urchins show that fertilisation and early devel-
opment are robust to temperatures well above ambient and the increases expected from climate
change [46–48]. Thermotolerance in sea urchin fertilisation and early development is conveyed by
maternal factors imprinted by ovary temperature [45,49] and potentially include protective heat
shock proteins [50,51]. There is strong evidence that adult thermal history, particularly maternal
acclimatisation, influences thermal tolerance in echinoderm fertilisation and development due to
adaptive phenotypic plasticity with respect to prevailing temperatures [49,52–55].

Climate warming is predicted to drive species ranges northwards in the northern hemisphere
and southwards in the southern hemisphere [56,57]. From a recent study on climate warming and
the range extension of thermophilic sea urchin species, a significant positive relationship between
Centrostephanus rodgersii (Agassiz) density and the extent of barrens has been unequivocally
proven in eastern Tasmania. It is likely that recent warming of the eastern Tasmanian coast
results in an environment increasingly favourable for the reproduction and development of this
sea urchin, and given prediction of continued warming for this coast, the likelihood of further
population expansion of C. rodgersii and its associated barren appears considerable [58]. Hart
and Scheibling (1988) [59] report evidence of an analogous temperature threshold mechanism for
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Strongylocentrotus droebachiensis (O.F. Müller, 1776) along the Atlantic coast of Nova Scotia
where sea urchin population booms and associated overgrazing of kelp beds were correlated with
a positive ocean temperature anomaly, allowing optimal temperatures for larval development.

Climate warming is perceptible in the Mediterranean realm, where a variety of ther-
mophilic species belonging to macroalgae, plankton, invertebrates and fishes, are extending their
distribution towards northern areas [60 and references therein].

In a pioneer study on the ecological consequences of increased mean temperature in the Mediter-
ranean Sea, Francour et al. [61] observed that in Corsica, at Scandola marine reserve, the abundance
of Arbacia lixula (L.), considered as thermophilous by Kempf [62], increased >12 times over
a time span of nine years: from densities of 8 individuals·m−2 in 1983 to 100 individuals·m−2

in 1992 [61]. The authors suggested that the increase in water temperature might have favoured
population growth of this thermophilic urchin; they also speculated on the impact of this grazer in
the formation of barrens, habitats of low primary production and reduced structure that negatively
affect several coastal fish that use erect macrophytes for shelter, food, nesting and settlement [61].

A recent study that investigated the relationships among predator fish, sea urchins and barrens
in the Mediterranean Sea across latitudes to predict the consequences of the ongoing large-scale
changes in the distribution patterns of native thermophilous species through the Mediterranean Sea
(including, e.g. Thalassoma pavo and A. lixula) supports Francour et al.’s hypothesis that A. lixula
may play an important role in the formation and maintenance of barrens in the Mediterranean [25].
From this point of view, the current expansion of this sea urchin northwards in the Mediterranean
could have the potential to induce changes in coastal phytobenthos by enhancing, for example,
the chance of transition from macroalgal beds to barrens.

By contrast, a large-scale decline in the abundance of the co-occurring Paracentrotus lividus
(Lamarck, 1816) is underway in many Mediterranean areas [63–66]. Although human harvest-
ing has been identified as the major factor causing such outbreaks, this species is considered a
gastronomic delicacy worldwide [67–69], global warming could play an important role in such
outbreaks, facilitating also the proliferation of native warm water species such as A. lixula.

In both wild and farmed Mediterranean P. lividus populations, the rate of gametogenesis
increases with temperature. In general, spawning takes place when the sea surface tempera-
ture ranges between 16 and 20 ◦C. This range is considered optimal for both fertilisation and the
survival and development of the larvae of P. lividus. At 24 ◦C, Spirlet et al. [70] observed fleshier
but less mature gonads, suggesting that high temperature can inhibit and/or interrupt P. lividus
gametogenesis.

A. lixula exhibits an opposite trend. From 2003 to 2008 we determined the gonadal somatic index
(GSI; the index of gonad mass relative to whole organism size) of this species (10 sea urchins with
test diameter 40 mm randomly collected during the summer spawning period) in two sites of Ustica
Island (southern Tyrrhenian Sea, Mediterranean, Italy). Results showed a positive correlation
between increased surface sea temperature and GSI of A. lixula (r = 0.30p < 0.01). The A. lixula
GSI was maximum (8.2 ± 1.9; mean ± SE) in 2008 at 26 ◦C and minimum (4.07 ± 0.5) in 2007
at 23.5 ◦C.

Because P. lividus gametogenesis is negatively affected by high temperature [71], it is likely
that this species might display lower reproductive potential than A. lixula, suggesting that climate
warming may result in unfavourable environment conditions for its survival. Climate warming
acting synergistically with overfishing [72] may allow a shift from a ubiquitous presence in
Mediterranean rocky reefs of P. lividus and A. lixula to a dominant presence of A. lixula.

The consequences of this scenario could be serious for the diversity and functioning of the
Mediterranean ecosystem. Many authors support the increasing evidence that A. lixula, less prone
to predation than P. lividus, may establish a positive feedback which tends to stabilise and maintain
the barren grounds in rocky littoral ecosystems [25,73]. As recently suggested by Privitera et al.
[74], this sea urchin is more effective in scraping rocky surfaces and showed a strong preference for
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encrusting corallines, suggesting a better fit in this habitat where such algal components represent
the largest cover.

We encourage future research aimed at understanding the interaction between global warming
and reproduction of A. lixula. Despite of the commonness and abundance of this species, there are
remarkably few studies about its reproductive biology. A reason for the lack of such biological
information seems to be that this unpalatable species has never been harvested for consumption
and thus has not been of direct economic interest.
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